Watage Estamation Tables

 

Kilowatt Hours to Heat Water

Amount of Water

Temperature Rise (°F)

Cubic
Feet

Gallons

20°

40°

60°

80°

100°

120°

140°

Kilowatts to heat in one hour

0.67

5

0.3

0.5

0.8

1.1

1.3

1.6

1.9

1.3

10

0.5

1.1

1.6

2.2

2.7

3.2

3.8

2.0

15

0.8

1.6

2.4

3.2

4.0

4.8

5.6

2.7

20

1.1

2.2

3.2

4.3

5.4

6.5

7.5

3.3

25

1.3

2.7

4

5.4

6.7

8.1

9.4

4.0

30

1.6

3.2

4.8

6.5

8.1

9.7

11.3

5.3

40

2.2

4.3

6.5

8.6

10.8

12.9

15.1

6.7

50

2.7

5.4

8.1

10.8

13.5

16.1

18.8

8.0

60

3.2

6.5

9.7

12.9

16.1

19.4

22.6

9.4

70

3.8

7.5

11.3

15.1

18.8

22.6

26.4

10.7

80

4.3

8.6

12.9

17.2

21.5

25.8

30.1

12.0

90

4.8

9.7

14.5

19.4

24.2

29.1

33.9

13.4

100

5.4

10.8

16.1

21.5

26.9

32.3

37.7

16.7

125

6.7

13.5

20.2

26.9

33.6

40.4

47.1

20.1

150

8.1

16.1

24.2

32.3

40.4

48.4

56.5

23.4

175

9.4

18.8

28.2

37.7

47.1

56.5

65.9

26.7

200

10.8

21.5

32.3

43

53.8

64.6

75.3

33.4

250

13.5

26.9

40.4

53.8

67.3

80.7

94.2

40.1

300

16.1

32.3

48.4

64.6

80.7

96.9

113.0

53.5

400

21.5

43.0

64.6

86.1

107.6

129.1

150.7

66.8

500

26.9

53.8

80.7

107.6

134.5

161.4

188.3

 

For Water:
Use Equation 1 for heating flowing water.
Use Equation 2 or the table for heating water in tanks.

Equation 1

GPM x Temperature Rise (°F) x .16

= KW

Equation 2

Gallons x Temperature Rise (°F)
372 x Heat-up time (hrs.)

= KW

Note: 10% safety factor is included.

 

 

 

 Kilowatt Hours to Heat Oil

Amount of Oil

Temperature Rise (°F)

Cubic
Feet

Gallons

50°

100°

200°

300°

400°

500°

Kilowatts to heat in one hour

0.67

5

0.3

0.7

1.4

2.09

2.79

3.49

1.3

10

0.7

1.4

2.8

4.19

5.58

6.98

2.0

15

1

2.1

4.2

6.28

8.37

10.5

2.7

20

1.4

2.8

5.6

8.37

11.2

14

3.3

25

1.7

3.5

7

10.5

14

17.4

4.0

30

2.1

4.2

8.4

12.6

16.7

20.9

5.3

40

2.8

5.6

11

16.7

22.3

27.9

6.7

50

3.5

7

14

20.9

27.9

34.9

8.0

60

4.2

8.4

17

25.1

33.5

41.9

9.4

70

4.9

9.8

20

29.3

39.1

48.8

10.7

80

5.6

11

22

33.5

44.7

55.8

12.0

90

6.3

13

25

37.7

50.2

62.8

13.4

100

7

14

28

41.9

55.8

69.8

16.7

125

8.7

17

35

52.3

69.8

87.2

20.1

150

10

21

42

62.8

83.7

105

23.4

175

12

24

49

73.3

97.7

122

26.7

200

14

28

56

83.7

112

140

33.4

250

17

35

70

105

140

174

40.1

300

21

42

84

126

167

209

53.5

400

28

56

112

167

223

279

66.8

500

35

70

140

209

279

349

 

For Oil:
Use equation or table

Gallons x Temperature Rise (°F)
860 x Heat-up time (hrs.)

= KW

Note: The above KW values are based on an average specific heat of 0.45 (btu/lb/°F) and a Density of 7.35 lb/gallon plus a 20% safety factor.

This table should be used only as a guide; exact wattage requirements can be calculated using the formulas at Heat Requirement Calculations.

 

 

 

Kilowatt Hours to Heat Air

Amount of Air

Temperature Rise (°F)

Air CFM

50

100

150

200

250

300

350

400

450

500

600

100

1.7

3.3

5

6.7

8.3

10

11.7

13.3

15

16.7

20

200

3.3

6.7

10

13.3

16.7

20

23.3

26.7

30

33.3

40

300

5

10

15

20

25

30

35

40

45

50

60

400

6.7

13.3

20

26.7

33.3

40

46.7

53.3

60

66.7

80

500

8.3

16.7

25

33.3

41.7

50

58.3

66.7

75

83.3

100

600

10

20

30

40

50

60

70

80

90

100

120

700

11.7

23.3

35

46.7

58.3

70

81.7

93.3

105

116.7

140

800

13.3

26.7

40

53.3

66.7

80

93.3

106.7

120

133.3

160

900

15

30

45

60

75

90

105

120

135

150

180

1000

16.7

33.3

50

66.7

83.3

100

116.7

133.3

150

166.7

200

1100

18.3

36.7

55

73.3

91.7

110

128.3

146.7

165

183.3

220

1200

20

40

60

80

100

120

140

160

180

200

240

 

For free air:
Use equation or table

CFM x Temperature Rise (°F)
3000

Use the maximum anticipated airflow. This equation assumes insulated duct (negligible heat loss) and 70°F inlet air at 14.7 PSIA

For compressed air:

CFM* x Density*(lbs/cu. ft.) x Temperature rise (°F)
228

*At heater inlet temperature and pressure

Note: If air flow is given in CFM at operating temperature and pressure it can be converted to SCFM (Standard Cubic Feet per Minute) with the following formula.

SCFM = CFM x ( P/14.7 ) x (530/T + 460)

P = operating pressure (gauge pressure + 14.7)

T = operating temperature

SCFM = flow rate in CFM at standard conditions of 70°F and 14.7 PSIA.

 

 

 

Back